Write your name here		
Surname	Other na	mes
Pearson Edexcel GCE	Centre Number	Candidate Number
Further F Mathema Advanced/Advance	atics FP2	
Wednesday 8 June 2016	5	Paper Reference
Time: 1 hour 30 minute	S	6668/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

1. Use algebra to find the set of values of *x* for which

$$\frac{x}{x+1} < \frac{2}{x+2}.$$

(Total 6 marks)

2. (*a*) Show that, for r > 0,

$$r-3+\frac{1}{r+1}-\frac{1}{r+2}=\frac{r^3-7r-5}{(r+1)(r+2)}.$$

(2)

(b) Hence prove, using the method of differences, that

$$\sum_{r=1}^{n} \frac{r^3 - 7r - 5}{(r+1)(r+2)} = \frac{n(n^2 + an + b)}{2(n+2)},$$

where *a* and *b* are constants to be found.

(5)

(Total 7 marks)

3. (a) Find the four roots of the equation
$$z^4 = 8(\sqrt{3} + i)$$
 in the form $z = re^{i\theta}$.
(5)
(b) Show these roots on an Argand diagram.

(2)

(Total 7 marks)

4. (i) $p\frac{dx}{dt} + qx = r$, where p, q and r are constants.

Given that x = 0 when t = 0,

(a) find x in terms of t

(1)

(b) find the limiting value of x as $t \to \infty$.

(ii)
$$\frac{\mathrm{d}y}{\mathrm{d}\theta} + 2y = \sin\theta.$$

Given that y = 0 when $\theta = 0$, find y in terms of θ .

(7)

(Total 12 marks)

5. (*a*) Use de Moivre's theorem to show that

$$\sin^5\theta \equiv a\,\sin 5\theta + b\,\sin 3\theta + c\,\sin \theta,$$

where *a*, *b* and *c* are constants to be found.

(b) Hence show that
$$\int_{0}^{\frac{\pi}{3}} \sin^{5}\theta \, \mathrm{d}\theta = \frac{53}{480}.$$

(5)

(5)

(Total 10 marks)

6. (a) Find the Taylor series expansion about $\frac{\pi}{4}$ of $\tan x$ in ascending powers of $\left(x - \frac{\pi}{4}\right)$ up to and including the term in $\left(x - \frac{\pi}{4}\right)^3$. (7)

(b) Deduce that an approximation for
$$\tan \frac{5\pi}{12}$$
 is $1 + \frac{\pi}{3} + \frac{\pi^2}{18} + \frac{\pi^3}{81}$.

(2)

(Total 9 marks)

7. (a) Show that the substitution $x = e^{u}$ transforms the differential equation

$$x^{2} \frac{d^{2} y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = -x^{-2}, \quad x > 0$$
 (I)

into the equation

$$\frac{d^2 y}{du^2} - 3\frac{dy}{du} + 2y = -e^{-2u}$$
(II)

(6)

(7)

- (b) Find the general solution of the differential equation (II).
- (c) Hence obtain the general solution of the differential equation (I) giving your answer in the form y = f(x).

(1)

(Total 14 marks)

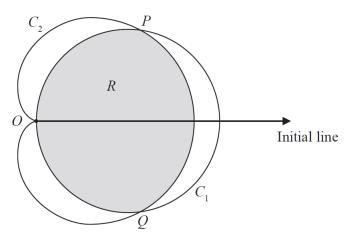


Figure 1

The curve C_1 with equation

$$r=7\cos\theta, \qquad -\frac{\pi}{2}<\theta\leq\frac{\pi}{2},$$

and the curve C_2 with equation

$$r = 3(1 + \cos \theta), \qquad -\pi < \theta \le \pi,$$

are shown on Figure 1.

The curves C_1 and C_2 both pass through the pole and intersect at the point *P* and the point *Q*.

(a) Find the polar coordinates of P and the polar coordinates of Q.

(3)

The regions enclosed by the curve C_1 and the curve C_2 overlap, and the common region R is shaded in Figure 1.

(*b*) Find the area of *R*.

(7) (Total 10 marks)

TOTAL FOR PAPER: 75 MARKS

Question Number	Scheme	Notes	Marks
NB	Question states "Using algebra" so purely graphical solutions (using calculator) 0/6. A sketch and some algebra to find CVs or intersection points can score accor the method used. (No B marks here so CVs - 1, -2 without working score 0)		
1	$\frac{x}{x+1} < \frac{2}{x+2}$		
	$x(x+1)(x+2)^2 < 2(x+1)^2(x+2)$	Multiply through by $(x+1)^2(x+2)^2$	M1
	(x+1)(x+2)(x(x+2)-2(x+1)) < 0	Collect terms and attempt to factorise	M1
	$(x+1)(x+2)(x^2-2) < 0$		
		Sketch need not be seen	
	(CVs:) $-2, -1, \pm \sqrt{2}$	Any 2 values correct(A1A0); all correct(A1A1) with no extras	A1,A1
	$-2 < x < -\sqrt{2} \qquad -1 < x < \sqrt{2}$ $\left(-2, -\sqrt{2}\right) \cup \left(-1, \sqrt{2}\right)$	Any one correct interval (A1A0); all correct(A1A1) with no extras Set notation may be used ∪ or "or" but not "and" Penalise final A only if " used in final intervals.	A1,A1
NB	All marks available if above working is 2	s done with = instead of $<$ in lines 1 and	(6)
			Total 6
Alts 1	$\frac{x}{x+1} - \frac{2}{x+2} < 0$		
	$\frac{x(x+2) - 2(x+1)}{(x+1)(x+2)} < 0$	Attempt common denominator	M1
	$\frac{\frac{x(x+2)-2(x+1)}{(x+1)(x+2)} < 0}{\frac{(x+\sqrt{2})(x-\sqrt{2})}{(x+1)(x+2)} < 0 \text{ or } \frac{(x^2-2)}{(x+1)(x+2)}$	Simplify numerator (errors such as $(x^2 - 1), (x^2 + 2)$ qualify)	M1
NB	All marks available if above working is done with = instead of $<$ in lines 1 and 2		
Alts 2	$x(x+1)(x+2)^{2} = 2(x+1)^{2}(x+2)$	Multiply through by $(x+1)^2(x+2)^2$	M1
	$x^4 + 3x^3 - 6x - 4 = 0$	Obtain a 4 term quartic equation and attempt to solve to obtain at least 2 non-zero values for x	M1
	$x = -2, -1, \pm \sqrt{2}$	Solution by calculator requires all 4 values correct (A1A1 or A0A0)	A1A1

Question Number	Scheme	Notes	Marks
ALT:	$y = \frac{2}{x+2}$	Draw sketch of graphs of $y = \frac{x}{x+1}$ and $y = \frac{2}{x+2}$ showing the area where they intersect. Graphs do not need to be labelled 2 vertical asymptotes and 2 intersection points needed. Only award if followed by some algebra to find the <i>x</i> coordinates of the points of intersection. Must obtain a quadratic eg x(x+2)-2(x+1)=0	M1
	$\frac{x}{x+1} = \frac{2}{x+2}$ $x(x+2) - 2(x+1) = 0$	Eliminate y	
		0.1) (1
	$x = \pm \sqrt{2}$ (CVs) $\pm \sqrt{2}, -1, -2$	Solve to $x =$ need not be seen until the intervals are formed	M1 A1,A1
	$-2 < x < -\sqrt{2}$ $-1 < x < \sqrt{2}$	Any one correct interval (A1A0), all correct(A1A1) Set notation may be used	A1,A1
NB	Finding CVs for $x(x+2) < 2(x+1)$ w/ A1		
	If all 4 CVs are given (ie $-1, -2$ include	ed) score M1M1A1 and possibly A1A1A1	

	$= \frac{-n}{2} - \frac{-n}{n+2}$ $\sum_{r=1}^{n} = \frac{n(n+1)(n+2) - 6n(n+2) + n + 2 - 2}{2(n+2)}$	Second M mark only needed. Attempt the correct common	A1
	$\frac{1}{n+1} - \frac{1}{n+2}$	Extract the 2 remaining terms.	A 1
	$\frac{1}{n} - \frac{1}{n+1}$	Line may be missing $= \frac{1}{n+1}$ Ignore extra terms at start due to including the " $(r-3)$ " term in each	M1
	$\frac{\frac{1}{2} - \frac{1}{3}}{\frac{1}{3} - \frac{1}{4}}$	Method of differences with at least 3 lines shown, (2 at start and 1 at end or 1 at start and 2 at end). Last	
(b)	$\sum_{r=1}^{n} (r-3) = \frac{1}{2}n(n+1) - 3n$ or $\sum_{r=1}^{n} (r-3) = \frac{1}{2}n(-2 + (n-3))$	numbers from 1 to <i>n</i> and $(-3n)$ or either formula for the sum of an AP. If general formula not quoted the sub must be correct. (See general rules on "Use of a formula" page 7)	M1
	For either: M1 complete method as described;	Alcso No errors seen and at least one intermediate step shown. Use formula for sum of the natural	
ALTs	 Start with RHS and use partial fractions Start with RHS, divide and then use partial fractions on the remainder. 		
	$=\frac{r^{3}-7r-5}{(r+1)(r+2)}^{**}$	intermediate step shown.	(2)
2.(a)	2	the numerator. Denominator must be seen now or later. No errors seen and at least one	M1
Number	$\frac{r(r+1)(r+2) - 3(r+1)(r+2) + r + 2 - (r+1)}{(r+1)(r+2)}$	Attempt common denominator with at least two correct expressions in	

Question Number	Scheme	Notes	Marks
3	$z^4 = 8(\sqrt{3} + i)$		
(a)	$\left(\left z^4 \right = \sqrt{\left(8\sqrt{3} \right)^2 + 8^2} = \sqrt{256} = \right) \ 16$ or $\left(z = \right) \ 2$	Give B1 for either 16 or 2 seen anywhere	B1
	$(\arg z =) \arctan \frac{1}{\sqrt{3}} = \frac{\pi}{6}$	$\frac{\pi}{6}$ Accept 0.524	B1
	$r^4 = 16 \Longrightarrow r = 2$		
	$4\theta = -\frac{23\pi}{6}, -\frac{11\pi}{6}, \frac{\pi}{6}, \frac{13\pi}{6}$	Range not specified, you may see $4\theta = \frac{\pi}{6}, \frac{13\pi}{6}, \frac{25\pi}{6}, \frac{37\pi}{6}$	
	$\theta = -\frac{23\pi}{24}, -\frac{11\pi}{24}, \frac{\pi}{24}, \frac{13\pi}{24}$	Clear attempt at both r and θ with at least 2 different values for their arg z, ie $r = \sqrt[4]{\text{their 16}}, \ \theta = \frac{\text{principal arg} + 2n\pi}{4}$ all 4 correct distinct values of θ cao. $\theta = \frac{\pi}{24}, \frac{13\pi}{24}, \frac{25\pi}{24}, \frac{37\pi}{24}$ scores A1	M1, A1
	Roots are		
	$2e^{\frac{-23i\pi}{24}}, 2e^{\frac{-11i\pi}{24}}, 2e^{\frac{i\pi}{24}}, 2e^{\frac{13i\pi}{24}}$	All in correct form cao $2e^{\frac{i\pi}{24}}, 2e^{\frac{13i\pi}{24}}, 2e^{\frac{25i\pi}{24}}, 2e^{\frac{37i\pi}{24}}$ scores A1	A1
(b)	$2e^{\frac{13i\pi}{24}}$ $2e^{\frac{25i\pi}{24}}$ $2e^{\frac{25i\pi}{24}}$ $2e^{\frac{37i\pi}{24}}$	 B1: All 4 radius vectors to be the same length (approx) and perpendicular to each other. Circle not needed. Radius vector lines need not be drawn. If lines drawn and marked as perpendicular, accept for B1 B1: All in correct position relative to axes. Points marked must be close to the relevant axes. At least one point to be labelled or indication of scale given. 	(5) B1B1
			(2)
			Total 7
ALT:	Obtain one value - usually $2e^{\frac{i\pi}{24}}$ - and j by spacing evenly around the circle.	place on the circle. Position the other 3	

Question Number	Scheme	Notes	Marks
4.(i)			
NB	If candidates appear to be considering any/all of p, q, r to be non-positive, send the		
ND	attempt to review.		
	By use of integrating factor:		
(i) (a)	$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{q}{p}x = \frac{r}{p}$ $e^{\int \frac{q}{p} dt} = e^{\frac{qt}{p}}$		
	$e^{\int \frac{q}{p} dt} = e^{\frac{qt}{p}}$		
	$xe^{\frac{qt}{p}} = \int \frac{r}{p}e^{\frac{qt}{p}} dt$	Obtain IF $e^{\pm \int \frac{q}{p} dt} = e^{\pm \frac{qt}{p}}$, multiply through by it and integrate LHS. Accept $\int r e^{\pm \frac{qt}{p}} dt$ for RHS	M1
	$xe^{\frac{qt}{p}} = \frac{r}{q}e^{\frac{qt}{p}}(+c)$	Integrate RHS $e^{\frac{qt}{p}} \rightarrow ke^{\frac{qt}{p}}$. Constant of integration may be missing. Dependent on the first M mark.	dM1
	$t = 0, x = 0, c = -\frac{r}{q}$	Substitute $x = 0$ and $t = 0$ to obtain <i>c</i> . Dependent on both M marks above.	ddM1
	$xe^{\frac{qt}{p}} = \frac{r}{q}e^{\frac{qt}{p}} - \frac{r}{q}$		
	$x = \frac{r}{q} - \frac{r}{q} e^{-\frac{q}{p}t}$	oe Change to $x = \dots$	A1
ALT:	By separating the variables:		
(i) (a)	$\int \frac{p \mathrm{d}x}{r - qx} = \int \mathrm{d}t$	Attempt to separate variables	M1
	$-\frac{p}{q}\ln(r-qx) = t(+c)$	Integrate to give ln Constant of integration may be missing.	dM1
	Use $t = 0, x = 0$	Substitute $x = 0$ and $t = 0$ to obtain their constant.	ddM1
	$x = \frac{r}{q} - \frac{r}{q} e^{-\frac{q}{p}t}$	Oe	A1
(b)	$t \to \infty, e^{-\frac{q}{p}t} \to 0,$ $(x \to)\frac{r}{q}$		(4
	$(x \rightarrow) \frac{r}{q}$	Сао	B1
			(1

4(ii)	$ye^{2\theta} = \int e^{2\theta} \sin\theta \mathrm{d}\theta$	Multiply through by IF of the form $e^{\pm 2\theta}$ and integrate LHS (RHS to have integral sign or be integrated later).	M1
		IF = $e^{2\theta}$ and all correct so far.	A1
	$ye^{2\theta} = \left[-e^{2\theta}\cos\theta\right] + 2\int e^{2\theta}\cos\theta d\theta$ Or $\left[\frac{1}{2}e^{2\theta}\sin\theta\right] - \frac{1}{2}\int e^{2\theta}\cos\theta d\theta$	Use integration by parts once (signs may be wrong)	M1
$\left(ye^{2\theta}=\right)$	$\begin{bmatrix} -e^{2\theta}\cos\theta \end{bmatrix} + 2\left\{ \begin{bmatrix} e^{2\theta}\sin\theta \end{bmatrix} - 2\int e^{2\theta}\sin\theta d\theta \right\}$ Or $\frac{1}{2}e^{2\theta}\sin\theta - \frac{1}{2}\begin{bmatrix} \frac{1}{2}e^{2\theta}\cos\theta + \frac{1}{2}\int e^{2\theta}\sin\theta d\theta \end{bmatrix}$	Use parts a second time (Sim conditions to previous use) Must progress the problem - not just undo the first application	M1
	$\left(ye^{2\theta}\right) - e^{2\theta}\cos\theta + 2e^{2\theta}\sin\theta - 4\int e^{2\theta}\sin\theta d\theta$ Or $\frac{1}{2}e^{2\theta}\sin\theta - \frac{1}{4}e^{2\theta}\cos\theta - \frac{1}{4}\int e^{2\theta}\sin\theta d\theta$	RHS correct	A1
	$ye^{2\theta} = -e^{2\theta}\cos\theta + 2e^{2\theta}\sin\theta - 4ye^{2\theta} + c$ Or $ye^{2\theta} = \frac{1}{2}e^{2\theta}\sin\theta - \frac{1}{4}e^{2\theta}\cos\theta - \frac{1}{4}ye^{2\theta} + c$	Replaces integral on RHS with integral on LHS (can be $ye^{2\theta}$ or $\int e^{2\theta} \sin \theta d\theta$) and uses $\theta = 0, y = 0$ to obtain a	dM1
	$ye^{2\theta} = \int e^{2\theta} \sin\theta d\theta = \frac{1}{5}e^{2\theta}(2\sin\theta - \cos\theta)(+c)$ $\theta = 0, y = 0 \Longrightarrow C = \frac{1}{5}$	value for the constant. Depends on the second M mark	
	$y = \frac{1}{5}(2\sin\theta - \cos\theta) + \frac{1}{5}e^{-2\theta}$	oe	A1cso (7)
ALT:	By aux equation method:		
	$m+2=0 \Longrightarrow m=-2$	Attempt to solve aux eqn	M1
	$CF(y =)Ce^{-2\theta}$	oe	A1
	$PI(y =) \alpha \sin \theta + \beta \cos \theta$	PI of form shown oe	M1
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \alpha\cos\theta - \beta\sin\theta$		
	$\alpha\cos\theta - \beta\sin\theta + 2\alpha\sin\theta + 2\beta\cos\theta = \sin\theta$	Diff and subst into equation	M1
	$2\alpha - \beta = 1, \alpha + 2\beta = 0 \Longrightarrow \alpha = \frac{2}{5}, \beta = -\frac{1}{5}$	Both $\alpha = \frac{2}{5}, \beta = -\frac{1}{5}$	A1
	$\theta = 0, y = 0 \Longrightarrow C = \frac{1}{5}$	Use $\theta = 0$, $y = 0$ to obtain a value for the constant	dM1
	$\theta = 0, y = 0 \Longrightarrow C = \frac{1}{5}$ $y = \frac{1}{5}(2\sin\theta - \cos\theta) + \frac{1}{5}e^{-2\theta}$	Must start $y = \dots$	A1cso(7) Total 12
NB	If the equation is differentiated to give a second order send to review.	er equation and an attempted solution	on seen –

Question Number	Scheme	Notes	Marks
5.	$\sin^5\theta = a\sin 5\theta + b\sin 5\theta$	$\sin 3\theta + c\sin \theta$	
(a)	$2i\sin\theta = z - \frac{1}{z}$ or $2i\sin n\theta = z^n - \frac{1}{z^n}$ oe	Seen anywhere "z" can be $\cos \theta + i \sin \theta$ or $e^{i\theta}$ or z See below for use of $e^{i\theta}$	B1
	$\left(z - \frac{1}{z}\right)^5 = \left(z^5 - \frac{1}{z^5}\right) - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$	M1: Attempt to expand powers of $z \pm \frac{1}{z}$ A1: Correct expression oe. A single power of z in each term. No need to pair. Must be numerical values; <i>nCr</i> s eg 5C2 score A0	M1A1
	$32\sin^5\theta = 2\sin 5\theta - 10\sin 3\theta + 20\sin \theta$	At least one term on RHS correct – no need to simplify.	M1
	$=\frac{1}{16}\sin 5\theta - \frac{5}{16}\sin 3\theta + \frac{5}{8}\sin \theta$	All terms correct oe Decimals must be exact equivalents. <i>a</i> , <i>b</i> , <i>c</i> need not be shown explicitly. Must be in this form.	A1cso (5)
Use of $e^{i\theta}$	$2i\sin\theta = (e^{i\theta} - e^{-i\theta})$ oe		B1
	$(2i\sin\theta)^5 = \left(\left(e^{5i\theta} - e^{-5i\theta}\right) - 5\left(e^{3i\theta} - e^{-3i\theta}\right) + 10^{10}\right)$	$0(e^{i\theta} - e^{-i\theta}))$	M1A1
	$(32i\sin^5\theta =) (2i\sin 5\theta - 5(2i\sin 3\theta) + 10)$ $(32\sin^5\theta =) (2\sin 5\theta - 10\sin 3\theta + 20\sin 3\theta)$		M1
	$=\frac{1}{16}\sin 5\theta - \frac{5}{16}\sin 3\theta + \frac{5}{8}\sin \theta$		Alcso
ALTs: Way 1	De Moivre on $\sin 5\theta$		
vvuy 1	$\sin 5\theta =$ $\operatorname{Im}(\cos 5\theta + i \sin 5\theta) = \operatorname{Im}(\cos \theta + i \sin \theta)$	$B1: \\ \sin 5\theta = \operatorname{Im}(\cos \theta + i \sin \theta)^{5}$	B1
	$=5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta$)	
	$=5(1-\sin^2\theta)^2\sin\theta-10(1-\sin^2\theta)\sin^3\theta$ $+\sin^5\theta$	M1 Eliminate $\cos \theta$ from the expression using $\cos^2 \theta = 1 - \sin^2 \theta$ on at least one of the cos terms.	M1
	$=5\sin\theta-20\sin^3\theta+16\sin^5\theta$	A1: Correct 3 term expression	Al
	Also: $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta = 3\sin \theta - 4s$	$in^3 \theta$	
	Thus: $16\sin^5\theta = \sin 5\theta + 20\sin^3\theta - 5\sin\theta$		
	$=\sin 5\theta + 5(3\sin \theta - \sin 3\theta) - 5\sin \theta$	M1: Use their expression for $\sin 3\theta$ to eliminate $\sin^3 \theta$	M1

	$=\sin 5\theta - 5\sin 3\theta + 10\sin \theta$		
	$\sin^5 \theta = \frac{1}{16} \sin 5\theta - \frac{5}{16} \sin 3\theta + \frac{5}{8} \sin \theta$	A1:cso Correct result with no errors seen.	A1cso (5)
Way 2	De Moivre on $\sin 5\theta$ and use of compound angle formulae		
U	$\sin 5\theta =$	B1:	
	$\operatorname{Im}(\cos 5\theta + \mathrm{i}\sin 5\theta) = \operatorname{Im}(\cos \theta + \mathrm{i}\sin \theta)^{5}$	$\sin 5\theta = \operatorname{Im} \left(\cos \theta + \mathrm{i} \sin \theta\right)^5$	B1
	$=5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta$		
	$=\frac{5}{2}\cos^3\theta\sin 2\theta-\frac{10}{4}\sin^2 2\theta\sin\theta+\sin^5\theta$	M1: Use $\sin 2\theta = 2\sin\theta\cos\theta$	M1
	$\sin^5\theta = \sin 5\theta - \frac{5}{4}(\sin 3\theta + \sin \theta)\cos^2\theta + \frac{10}{4}(1 - \frac{10}{4})\cos^2\theta + 1$	$-\cos^2 2\theta$) $\sin \theta$	Al
	$=\sin 5\theta - \frac{5}{8}\cos \theta (\sin 4\theta + 2\sin 2\theta) + \frac{10}{4}\sin \theta -$	$\frac{10}{8}(\sin 3\theta - \sin \theta)\cos^2 \theta$	
	$=\sin 5\theta - \frac{5}{16} (\sin 5\theta + \sin 3\theta + 2(\sin 3\theta + \sin \theta))$		M1
	$+\frac{10}{4}\sin\theta - \frac{10}{16}(\sin 5\theta + \sin \theta - \sin 3\theta + \sin \theta)$		1111
	$=\frac{1}{16}\sin 5\theta - \frac{5}{16}\sin 3\theta + \frac{5}{8}\sin \theta$	A1cso	Alcso
Way 3	Working from right to left:		
	$\sin 5\theta =$ Im(\cos 5\theta + i\sin 5\theta) = Im(\cos \theta + i\sin \theta)^5		B1
	$\sin 3\theta =$		
	$\operatorname{Im}(\cos 3\theta + \mathrm{i}\sin 3\theta) = \operatorname{Im}(\cos \theta + \mathrm{i}\sin \theta)^{3}$		
	$5a(1-2\sin^2\theta+\sin^4\theta)\sin\theta-10a(1-\sin^2\theta)\sin\theta$	$n^3 \theta + a \sin^5 \theta$	
	$+3b(1-\sin^2\theta)\sin\theta-b\sin^3\theta+c\sin\theta$		
	+3 θ (1-sin θ)sin θ - θ sin θ + θ csin θ M1: Find the imaginary parts in terms of sin θ and sub for sin 5 θ , sin 3 θ in RHS		M1A1
	A1: Correct (unsimplified) expression		
	5a + 10a + a = 1	M1: Compare coefficients to	
	-10a - 10a - 3b - b = 0	obtain at least one of the equations shown	M1
	5a+3b+c=0 $a = \frac{1}{16}, \ b = -\frac{5}{16}, \ c = \frac{5}{8}$	Alcso	Alcso

(b)	$\int_{0}^{\frac{\pi}{3}} \sin^{5} \theta d\theta$ = $\frac{1}{32} \left[-\frac{2}{5} \cos 5\theta + \frac{10}{3} \cos 3\theta - 20 \cos \theta \right]_{0}^{\frac{\pi}{3}}$ NB: Penultimate A mark has been moved up to here.	M1: $\sin n\theta \rightarrow \pm \frac{1}{n}\cos n\theta$ for $n = 3$ or 5 A1ft: 2 terms correctly integrated A1ft: Third term integrated correctly.	M1A1ft A1ft
	$= \left(-\frac{1}{160} - \frac{5}{48} - \frac{5}{16}\right) - \left(-\frac{1}{80} + \frac{5}{48} - \frac{5}{8}\right)$ $= -\frac{203}{480} - \left(-\frac{256}{480}\right)$	M1:Substitute both limits in a changed function to give numerical values. Incorrect integration such as $\pm n \cos n\theta$ could get M0A0A0M1A0	M1
	$\int_0^{\frac{\pi}{3}} \sin^5 \theta = \frac{53}{480} **$	cso, no errors seen.	A1cso (5) Total 10
OR:(b)	$\sin^5\theta = a\sin 5\theta + b\sin 3\theta + c\sin \theta$	Or their <i>a</i> , <i>b</i> . <i>c</i> letters used or random numbers chosen	
	$\int_0^{\frac{\pi}{3}} \sin^5 \theta \mathrm{d}\theta = \left[-\frac{a}{5} \cos 5\theta - \frac{b}{3} \cos 3\theta - c \cos \theta \right]_0^{\frac{\pi}{3}}$	their expression oe	
		M1:Substitute both limits, no trig functions	
		A0 A0 (A1s impossible here)	

Scheme	Notes	Marks
$f(x) = \tan x$		
$f'(x) = \sec^2 x$ or $\frac{1}{\cos^2 x}$		B1
$f''(x) = 2 \sec x (\sec x \tan x)$ $= 2 \sec^2 x \tan x$	Use of Chain Rule (may use product rule)	M1
$f'''(x) = 2 \sec^2 x (\sec^2 x) +2 \tan x (2 \sec x (\sec x \tan x))) = 2 \sec^4 x + 4 \sec^2 x \tan^2 x$	M1: Attempt the third derivative A1: Correct third derivative, any equivalent form.	M1 A1
$f\left(\frac{\pi}{4}\right) = 1, f'\left(\frac{\pi}{4}\right) = 2,$ $f''\left(\frac{\pi}{4}\right) = 4, f'''\left(\frac{\pi}{4}\right) = 16$	Use $\frac{\pi}{4}$ in f(x) and in their 3 derivatives.	M1
$\tan x = 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^{2} + \frac{8}{3}\left(x - \frac{\pi}{4}\right)^{3}$	M1: Attempt a Taylor series up to $\left(x \pm \frac{\pi}{4}\right)^3$ using their derivatives. tan x not needed and coeffs need not be simplified but must be numerical. A1cso: A correct Taylor series. Equivalent fractions and factorials allowed. Must start tan $x = \dots$ or $y = \dots$ or f(x) = provided y or $f(x)$ have been defined to be tan x.	M1 A1cso
Some alternative derivatives:		(7)
Using sin and cos $f(x) = \frac{\sin x}{\cos x}$ $f'(x) = \frac{\cos x(\cos x) - \cos x(-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}$ $f''(x) = \frac{(\cos^2 x)(0) - 1(-2\cos x \sin x)}{\cos^4 x} = \frac{2\sin x}{\cos^2 x}$ $f'''(x) = \frac{\cos^3 x(2\cos x) - 2\sin x(-3\cos^2 x \sin x)}{\cos^6 x}$ alternative third derivatives (replacing sec ² x with chain rule) $f''(x) = 2\sec^2 x \tan x$ $f''(x) = 2(1 + \tan^2 x)\tan x = 2\tan x + 2\tan^3 x$	$1 + \tan^2 x$ in second derivative then	
	$f(x) = \tan x$ $f'(x) = \sec^{2} x \text{ or } \frac{1}{\cos^{2} x}$ $f''(x) = 2 \sec x(\sec x \tan x)$ $= 2 \sec^{2} x \tan x$ $f'''(x) = 2 \sec^{2} x(\sec x \tan x))$ $= 2 \sec^{2} x \tan x (2 \sec x(\sec x \tan x))$ $= 2 \sec^{4} x + 4 \sec^{2} x \tan^{2} x$ $f\left(\frac{\pi}{4}\right) = 1, f'\left(\frac{\pi}{4}\right) = 2,$ $f''\left(\frac{\pi}{4}\right) = 4, f'''\left(\frac{\pi}{4}\right) = 16$ $\tan x = 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^{2}$ $+ \frac{8}{3}\left(x - \frac{\pi}{4}\right)^{3}$ $\frac{\text{Some alternative derivatives:}}{\text{Using sin and cos}}$ $f(x) = \frac{\sin x}{\cos x}$ $f'(x) = \frac{\cos x(\cos x) - \cos x(-\sin x)}{\cos^{2} x} = \frac{1}{\cos^{2} x}$ $f''(x) = \frac{\cos^{2} x(2 \cos x) - 2 \sin x(-3 \cos^{2} x \sin x)}{\cos^{4} x} = \frac{2 \sin x}{\cos^{2} x}$ $\frac{1}{\cos^{2} x} = \frac{\cos^{2} x \tan x}{\cos^{2} x}$	f(x) = tan xImage: construct of the system of

(b)	$\tan \frac{5\pi}{12} \approx 1 + 2\left(\frac{5\pi}{12} - \frac{\pi}{4}\right) + 2\left(\frac{5\pi}{12} - \frac{\pi}{4}\right)^2 + \frac{8}{3}\left(\frac{5\pi}{12} - \frac{\pi}{4}\right)^3$	Sub $x = \frac{5\pi}{12}$ in their part (a)	
	$\tan\frac{5\pi}{12} \approx 1 + 2\left(\frac{\pi}{6}\right) + 2\left(\frac{\pi}{6}\right)^2 + \frac{8}{3}\left(\frac{\pi}{6}\right)^3$	change $\left(\frac{5\pi}{12} - \frac{\pi}{4}\right)$ to $\left(\frac{\pi}{6}\right)$ in at least one term of their expansion or just use $\left(\frac{\pi}{6}\right)$ $\left(\frac{\pi}{6}\right)$ to be seen explicitly is second term $\left(\frac{\pi}{3}\right)$ does not qualify	M1
	$\tan\frac{5\pi}{12} \approx 1 + \frac{\pi}{3} + \frac{\pi^2}{18} + \frac{\pi^3}{81} **$	Must start $\tan \frac{5\pi}{12}$ and justify use of $\left(\frac{\pi}{6}\right)$ - ie $\frac{5\pi}{12} - \frac{\pi}{4} = \frac{\pi}{6}$ either seen separately or a term of the expansion changed from $k\left(\frac{5\pi}{12} - \frac{\pi}{4}\right)^n$ to $k\left(\frac{\pi}{6}\right)^n$	A1cso
			(2)
			Total 9

Question Number	Scheme	Marks
7 (a)	$x = e^{u} \frac{dx}{du} = e^{u} \text{ or } \frac{du}{dx} = e^{-u} \text{ or } \frac{dx}{du} = x \text{ or } \frac{du}{dx} = \frac{1}{x}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = e^{-u} \frac{dy}{du}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-u} \frac{\mathrm{d}y}{\mathrm{d}u}$	M1A1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\mathrm{e}^{-u} \frac{\mathrm{d}u}{\mathrm{d}x} \frac{\mathrm{d}y}{\mathrm{d}u} + \mathrm{e}^{-u} \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-2u} \left(-\frac{\mathrm{d}y}{\mathrm{d}u} + \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \right)$	M1A1
	$x^{2} \frac{d^{2} y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = -x^{-2}$	
	$e^{2u} \times e^{-2u} \left(-\frac{dy}{du} + \frac{d^2y}{du^2} \right) - 2e^u \times e^{-u} \frac{dy}{du} + 2y = -e^{-2u}$	dM1
	$\frac{d^2 y}{du^2} - 3\frac{dy}{du} + 2y = -e^{-2u} $ *	A1cso (6)
(a)		
M1	obtaining $\frac{dy}{dx}$ using chain rule here or seen later (may not be shown explicitly but appear in the substitution)	
A1	correct expression for $\frac{dy}{dx}$ any equivalent form (again, may not be seen until substitution)	
M1	obtaining $\frac{d^2 y}{dx^2}$ using product rule (penalise lack of chain rule by the A mark)	
A1	a correct expression for $\frac{d^2 y}{dx^2}$ any equivalent form	
dM1	substituting in the equation to eliminate <i>x</i> Only <i>u</i> and <i>y</i> now Depends on both previous M marks. Substitution must have come from their work	
A1cso	obtaining the given result from completely correct work.	

	ALTERNATIVE 1	
	$x = e^u \frac{\mathrm{d}x}{\mathrm{d}u} = e^u = x$	
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}u} = x\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1
	$\frac{d^2 y}{du^2} = 1 \frac{dx}{du} \times \frac{dy}{dx} + x \frac{d^2 y}{dx^2} \times \frac{dx}{du} = x \frac{dy}{dx} + x^2 \frac{d^2 y}{dx^2}$	M1A1
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - \frac{\mathrm{d}y}{\mathrm{d}u}$	
	$x^{2} \frac{d^{2} y}{dx^{2}} = \frac{d^{2} y}{du^{2}} - \frac{dy}{du}$ $\left(\frac{d^{2} y}{du^{2}} - \frac{dy}{du}\right) - 2x \times \frac{1}{x} \frac{dy}{du} + 2y = -x^{-2}$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - 3\frac{\mathrm{d}y}{\mathrm{d}u} + 2y = -\mathrm{e}^{-2u} \qquad *$	dM1A1cso (6)
M1	obtaining $\frac{dy}{du}$ using chain rule here or seen later	
A1	correct expression for $\frac{dy}{du}$ here or seen later	
M1	obtaining $\frac{d^2 y}{du^2}$ using product rule (penalise lack of chain rule by the A mark)	
A1	Correct expression for $\frac{d^2 y}{du^2}$ any equivalent form	
dM1A1c so	As main scheme	
	ALTERNATIVE 2:	
	$u = \ln x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}\frac{\mathrm{d}y}{\mathrm{d}u}$	M1A1
	$\frac{d^2 y}{dx^2} = -\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x} \frac{d^2 y}{du^2} \times \frac{du}{dx} = -\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x^2} \frac{d^2 y}{du^2}$	M1A1
	$x^{2}\left(-\frac{1}{x^{2}}\frac{dy}{du}+\frac{1}{x^{2}}\frac{d^{2}y}{du^{2}}\right)-2x\times\frac{1}{x}\frac{dy}{du}+2y=-x^{-2}$	
	$\frac{d^2 y}{du^2} - 3\frac{dy}{du} + 2y = -e^{-2u}$ * Depends on both previous M marks	dM1A1cso

	There are also other solutions which will appear, either starting from equation II and obtaining equation I, or mixing letters <i>x</i> , <i>y</i> and <i>u</i> until the final stage.	
M1	obtaining a first derivative with chain rule	
A1	correct first derivative	
M1	obtaining a second derivative with product rule (Chain rule errors are penalised through A marks)	
A1	correct second derivative with 2 or 3 variables present	
dM1	Either substitute in equation I or substitute in equation II according to method chosen AND obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)	
A1cso	Obtaining the required result from completely correct work	

Question Number	Scheme		Notes	Marks
(b)	$m^2 - 3m + 2 = 0 \Longrightarrow m = 1, 2$		M1: Forms AE and attempts to solve to $m =$ or values seen in CF A1: Both values correct. May only be seen in the CF	M1A1
	$(CF =)Ae^{u} + Be^{2u}$		CF correct oe can use any (single) variable	A1
	$y = \lambda e^{-2u}$			
	$\frac{\mathrm{d}y}{\mathrm{d}u} = -2\lambda \mathrm{e}^{-2u}$ $\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} = 4\lambda \mathrm{e}^{-2u}$	a solution and diffe	n $y = \lambda e^{-2u}$ (or $y = \lambda u e^{-2u}$ if $m = -2$ is of the aux equation) rentiate PI twice wrt u . th x instead of u	M1
	$4\lambda e^{-2u} + 6\lambda e^{-2u} + 2\lambda e^{-2u} = -e^{-2u}$ $\Rightarrow \lambda = -\frac{1}{12}$	u	dM1 substitute in the equation to obtain value for λ Dependent on the second M1 A1 $\lambda = -\frac{1}{12}$	dM1A1
	$y = Ae^{u} + Be^{2u} - \frac{1}{12}e^{-2u}$		A complete solution, follow through their CF and PI. Must have $y = a$ function of u Allow recovery of incorrect variables.	B1ft
				(7)
(c)	$y = Ax + Bx^{2} - \frac{1}{12x^{2}}$ Or $y = Ae^{\ln x} + Be^{2\ln x} - \frac{1}{12e^{2\ln x}}$		Reverse the substitution to obtain a correct expression for y in terms of x No ft here $\frac{1}{12x^2}$ or $\frac{1}{12}x^{-2}$ Must start $y =$	B1
				(1)
				Total 14

Question Number	Scheme	Notes	Marks
8(a)	$7\cos\theta = 3 + 3\cos\theta \Longrightarrow \cos\theta = \frac{3}{4} \theta = \dots$	Solve to $\theta = \dots$	M1
	$P(\frac{21}{4},\alpha)$ and $Q(\frac{21}{4},-\alpha)$ or $\left(\frac{21}{4},2\pi-\alpha\right)$	A1: Angles correct, Decimal for α to be 3 sf minimum	A1
	where $\alpha = \arccos \frac{3}{4}$ or 0.7227	A1: <i>r</i> to be $\frac{21}{4}$, $5\frac{1}{4}$ or 5.25 Need not be in coordinate brackets	A1cao (3)
	$\left(2\times\frac{1}{2}\right)\int (7\cos\theta)^2 \mathrm{d}\theta$	M1: Use of $\frac{1}{2}\int r^2 d\theta$ for C_1	
	$=\frac{49}{2}\int (\cos 2\theta + 1)d\theta$	leading to $k \int (\cos 2\theta \pm 1) d\theta$ OR Area of a segment	M1
(b)	$= \frac{49}{2} \left[\frac{1}{2} \sin 2\theta + \theta \right]$ OR Area of sector $= \frac{1}{2} r^2 \left(\beta - \sin \beta \right)$	A1: Correct integration of $49\cos^2\theta$ Ignore any limits shown.	A 1
	$=\frac{1}{2}\left(\frac{7}{2}\right)^{2}\left(\pi-2\alpha-\sin(\pi-2\alpha)\right)$	OR correct expression for the area of the sector	A1
	$ (2 \times \frac{1}{2}) \int (3 + 3\cos\theta)^2 d\theta $ = 9 \int (1 + 2\cos\theta + \cos^2\theta) d\theta	M1: Set up the integral for C_2 and reach $k \int \left(1 + 2\cos\theta + \frac{1}{2}(\cos 2\theta \pm 1)\right) d\theta$	M1
	$=9\int \left(1+2\cos\theta+\frac{1}{2}(\cos 2\theta+1)\right)d\theta$		
	$= \left[9\theta + 18\sin\theta + \frac{9}{2}(\frac{1}{2}\sin 2\theta + \theta)\right]_{0}^{\alpha}$	dM1: Correct integration of the trig functions $\cos\theta \rightarrow \pm \sin\theta$, $\cos 2\theta \rightarrow \pm \frac{1}{2}\sin 2\theta$	dM1
		A1 Fully correct integration with limits, $0 \rightarrow \alpha$ or $-\alpha \rightarrow \alpha$	A1
	Area = $9\alpha + 18\sin\alpha + \frac{9}{2}(\frac{1}{2}\sin 2\alpha + \alpha)$ + $\frac{49\pi}{4} - \frac{49}{2}(\frac{1}{2}\sin 2\alpha + \alpha)$	dM1: Depends on all 3 M marks above Combine areas correctly to find the required area. Use of correct limits required.	dM1
	$\frac{49\pi}{4} + \frac{3\sqrt{7}}{4} - 11\alpha$ or 32.5	A1cso Correct answer, exact or awrt 32.5	A1cso (7) Total 10
NB	The area can be found by "area of circle – area of crescent": Send to review.		
L	l	I	<u>ا</u>